What are Stem Cells What are Stem Cells
National Institute of Health—Resource for Stem Cell Research

I. Introduction

Research on stem cells is advancing knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. This promising area of science is also leading scientists to investigate the possibility of cell-based therapies to treat disease, which is often referred to as regenerative or reparative medicine.

Stem cells are one of the most fascinating areas of biology today. But like many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.

The NIH developed this primer to help readers understand the answers to questions such as: What are stem cells? What different types of stem cells are there and where do they come from? What is the potential for new medical treatments using stem cells? What research is needed to make such treatments a reality?

A. What are stem cells and why are they important? Stem Cells for the Future Treatment
of Parkinson’s Disease

Parkinson’s disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons.

In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.

Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson’s disease. The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson’s patients at some point in the future.

Stem cells have two important characteristics that distinguish them from other types of cells. First, they are unspecialized cells that renew themselves for long periods through cell division. The second is that under certain physiologic or experimental conditions, they can be induced to become cells with special functions such as the beating cells of the heart muscle or the insulin-producing cells of the pancreas.

Scientists primarily work with two kinds of stem cells from animals and humans: embryonic stem cells and adult stem cells, which have different functions and characteristics that will be explained in this document. Scientists discovered ways to obtain or derive stem cells from early mouse embryos more than 20 years ago. Many years of detailed study of the biology of mouse stem cells led to the discovery, in 1998, of how to isolate stem cells from human embryos and grow the cells in the laboratory. These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor.

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

It has been hypothesized by scientists that stem cells may, at some point in the future, become the basis for treating diseases such as Parkinson’s disease, diabetes, and heart disease.

Scientists want to study stem cells in the laboratory so they can learn about their essential properties and what makes them different from specialized cell types. As scientists learn more about stem cells, it may become possible to use the cells not just in cell-based therapies, but also for screening new drugs and toxins and understanding birth defects. However, as mentioned above, human embryonic stem cells have only been studied since 1998. Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include:

determining precisely how stem cells remain unspecialized and self renewing for many years; and identifying the signals that cause stem cells to become specialized cells.


Share: